Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.
KMID : 1156220220480060298
Journal of Environmental Health Sciences
2022 Volume.48 No. 6 p.298 ~ p.305
Existing Population Exposure Assessment Using PM2.5 Concentration and the Geographic Information System
Woo Jae-Min

Min Gi-Hong
Kim Dong-Jun
Cho Man-Su
Sung Kyeong-Hwa
Won Jung-Il
Lee Chae-Kwan
Shin Ji-Hun
Yang Won-Ho
Abstract
Background: The concentration of air pollutants as measured by the Air Quality Monitoring System (AQMS) is not an accurate population exposure level since actual human activities and temporal and spatial variability need to be considered. Therefore, to increase the accuracy of exposure assessment, the population should be considered. However, it is difficult to obtain population data due to limitations such as personal information.

Objectives: The existing population defined in this study is the number of people in each region's grid. The purpose is to provide a methodology for evaluating exposure to PM2.5 through existing population data provided by the National Geographic Information Institute.

Methods: The selected study period was from October 26 to October 28, 2021. Using PM2.5 concentration data measured at the Sensor-based Air Monitoring Station (SAMS) installed in Guro-gu and Wonju-si, the concentration for each grid was estimated by applying inverse distance weights through QGIS version 3.22.
Considering the existing population, population-weighted average concentration (PWAC) was calculated and the exposure level of the population was compared by region.

Results: The outdoor PM2.5 concentration as measured through the SAMS was high in Wonju-si on all three days. Wonju-si showed an average 22% higher PWAC than Guro-gu. As a result of comparing the PWAC and outdoor PM2.5 concentration by region, the PWAC in Guro-gu was 1~2% higher than the observed value, but it was almost the same. Conversely, observations of Wonju-si were 10.1%, 11.3%, and 8.2% higher than PWAC.

Conclusions: It is expected that the Geographic Information System (GIS) method and the existing population will be used to evaluate the exposure level of a population with a narrow activity radius in further research. In addition, based on this study, it is judged that research on exposure to environmental pollutants and risk assessment methods should be expanded.
KEYWORD
PM2.5, existing population, geographic information system, population exposure
FullTexts / Linksout information
Listed journal information
ÇмúÁøÈïÀç´Ü(KCI)